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The problem of the constructive determination of the natural frequencies and modes of oscillations of distributed systems with 
substantially varying parameters is investigated. Unlike the classical case, the self-adjoint boundary-value problem allows of an 
arbitrary non-linear dependence of the coefficients of the equation on a numerical parameter, the eigenvalues of which are required 
to be obtained. An original numerical-analytic method is developed for a highly accurate construction of the desired solution. 
The computational efficiency of the algorithm, which possesses the property of accelerated (quadratic) convergence, is illustrated 
by the calculation of model examples. The approach can be extended to other classes of generalized problems of determining 
the critical values of the parameters and the forms corresponding to them, in particular, to the problem of the loss of stability 
of elastic systems with variable stiffnesses and inertial and force characteristics. A highly accurate solution of the classical Prandtl 
problem of determining the critical force which leads to lateral buckling of a long homogeneous cantilever beam is constructed, 
taking its weight into account. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Many problems in mechanics, the theory of oscillations and stability, control theory, mathematical and 
theoretical physics, hydrodynamics, acoustics, the dynamics of the ocean and the atmosphere, the theory 
of elasticity, etc., lead to generalized boundary-value problems of determining the natural frequencies 
and modes of oscillations (see, for example, [1--8]). It is required to construct a solution of the generalized 
Sturm-Liouville problem, in which the coefficients of the equation are arbitrary non-linear functions 
of the desired parameter. To fix our ideas, we will consider the following formulation of the eigenvalue 
and eigenfunction problem 

(p (x ,~ , )u ' ) '  + r(x,~,)u = O, O<~x<~l < ,,o, u(O) = u( l )  = 0 

0 < p ~ p ~ p 2 < ~ ,  0<t i<~r~r2<~,  7~eA 

(1.1) 

Here and henceforth the prime denotes a derivative with respect to the argument x. The functions 
p and r in (1.1) are assumed to be sufficiently smooth and non-zero; they have a definite physical meaning. 
The length of the interval l is special, as a rule, a priori, in accordance with the formulation of the 
problem. The set A of admissible values of ~. is determined with reference to conditions (1.1). Note 
that the condition that r must be positive may not apply to a relatively small set of values of x and ~. 
(see below). 

We will formulate the problem of obtaining those real values of L for which non-trivial solutions of 
the equation with boundary conditions (1.1) exist. Note that, in the general case, the values of ~. are 
assumed to be complex [9-11]. However, from physical considerations real values of ~. are often of 
interest from the practical point of view, in particular, positive values (the square of the frequency, the 
critical force, the parameter of the system, etc.) and also the corresponding functions u(x,  ~)  [1-10]. 
We will henceforth consider real solutions of problem (1.1). 

In the classical formulation, when we have expressionsp -- p(x ) ,  r = ~.p(x) - q(x)  (usuallyp = p -- 
1), the properties of the solution of the corresponding self-adjoint problem have been investigated in 
some detail. These numerous results represent the basis of the theory of linear self-adjoint operators 
and functional analysis. As compared with the classical case, the behaviour of the eigenvalues ~ and 
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the functions un(x)  = u(x ,  Ln) (n = 1, 2 . . . .  ) - - the solutions of the generalized problem (1.1)--as a rule 
turns out to be extremely unusual, and a detailed study of it is difficult. The properties of the "spectrum" 
{~} (and the "basis" {Un(X)})  as a function of order number n (and x) may differ dramatically from 
the generally known properties, ,obtained for the classical problem. 

We will give some simpleexamples for equations with variable coefficients of the Euler type, for which a complete 
analytical solution can be ,obtained. 

Suppose I = 1,p - 1, r = (k + x)-2; then, in the admissible region A = {k: k < -1, k > 0}, we obtain by standard 
calculations 

~.n =(expTn-1) -l, T=(2/~f3) re, ~'n +Z'-n =-1, n=+l,  +2 .... (1.2) 

u n (x) = c n (1 + x / ~n ))~ sin[(~x / y) In(1 + x / ~'n )], Cn = eonst 

The eigenvalues ~ (1.2) are concentrated in extremely narrow domains around k = + 0 and k ffi - 1 - 0, where 
we have the following estimates 

0<~,n~<cexp(-yn), n~l, c - I  
(1.3) 

0 < -(1 + k n)~cexp(Tn), n~<-I 

It follows from (1.3) that the quantities kn (1.2) approach one another extremely rapidly (exponentially) as 
In l ~ oo. The functions un(x) (1.2) for sufficiently large In l oscillate in an exotic way as mpidl~ as desired. 

For the function r -- L2(1 + Lr) -2, obtained by introducing k -1 and the change in notation L- --~ L, carried out 
above, in the admissible region A = {k: -1 < 7~ < oo} we obtain the desired solution 

~n=expyn-1, (~.n+l)(~._n+l)=l, n=+l,  +2 .... 
(1.4) 

u n (x) = c n (1 + ~nx) ~ sin[(r~/~/) ln(l + ~.nx)], c n = eonst 

The numbers ~ (1.4) increase exponentially as n ~ + oo and thus diverge, while the functions un(x) oscillate as 
rapidly as desired with respect to x; as n ~ - oo the quantity n ~ - oo and approach one another exponentially, 
while the functions un(x) oscillate rapidly in the vicinity of the value x = 1. 

Other elementary examples can be given which illustrate various unusual properties of the solutions of generalized 
problem (1.1). It should be noted that.the spectrum may be discrete-continuous, finite or empty. The specific 
feature of the properties of the eigenfunetions u~(x) manifests itself in the orthogonality condition, which has the 
form 

I 
f {-tp(x,~.,,)- p(x,~.,,,)]u;,(X)Um (x) + 
o 

+[r(x'~'n)-r(X'~m)]Un(X)Ura(x)}dx--O, ~'n r/: ~'m (1.5) 

Relations (1.5) are identical, in the classical case, withthe well-known ones. By passing to the limit in (1.5) one 
obtains an analogue of the "generalized norm" of the eigenfunction I lu.(x) l I 

t i) 
~Un[2 10[ ] t n=1,2 .... (1.6) 

If the functions 0p/c3k, 0r/0k do not change sign, expression (1.6) possesses the usual properties of the Sobolev 
root mean square norm W~ 1). Problems of comNeteness of the denumerable system of eigenfunctions {u~(x)} and 
of the expandability of the functions f(x) e W~ ) in the interval 0 ~< x ~< 1, k e A in the "basis" indicated remain 
unsolved. 

The main results, which relate to generalized problems of type (1.1) and also to more general ones, 
considered in the complex domain, and references to fundamental publications can be found in [9-11]. 
According to existing terminology [10], problem (1.1) relates to the class of non-self-adjoint differential 
operators. The general properties of these operators were investigated in the fundamental papers by 
Keldysh, Steklov, Tamarkin et  al .  In particular, the conditions were established for which a real discrete 
spectrum exists [9]. However, calculations of the eigenvalues and eigenftmctions with the required 
accuracy encounter fundamental difficulties; there are no effective algorithms. A highly effective 
numerical-analytic method of solving problem (1.1), which possesses the property of accelerated 
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convergence, is described below. It is based on a differential relation, which we have established, between 
the eigenvalue Ln and the length I of the interval (see relation (4.4) below). 

2. A VARIATIONAL TREATMENT OF THE PROBLEM AND THE 
CONSTRUCTION OF ESTIMATES 

We will now turn to the problem of a highly accurate numerical solution of generalized problem (1.1). 
We will assume that certain requirements of smoothness imposed on the functions p(x, L) and r(x, L) 
in the region 0 ~< x ~< l, L e A are satisfied; these follow from later constructions. In order to determine 
a certain eigenvalue and the corresponding function we consider a family of isoperimetric variational 
problems with family parameter L in the class of continuously differentiable functions U(x, L) 

I 
Jk[U ] = J p(x ,X)U'2dx ~ nun U, U ( O ) =  U(l) = 0 

o 

l 
o x t v ]  = Ilel  = I r(x,~')V2dx = 1, L E A 

0 

(2.1) 

For each fixed value of X e A, problem (2.1) is classical. Namely, a normalized continuous differen- 
tiable function Ul(x, L) exists which provides the absolute minimum for the functionalY~: Jx[U1] = lal(L) 
> 0. The quantity ILl(L) is the minimum eigenvalue, while Ul(x, L) = U(x, ~q(L), L) is the function of 
the classical Sturm-Liouville problem with parameter ~t corresponding to it 

(p(x,k)U')" +~tr(x,X)U ~ O, U(O) = U(l) = 0, 7~ ~ A (2.2) 

Problem (2.2) has an infinite set of discrete eigenvalues l#n, such that ~n+l > ~ > 0 ( m  = 1, 2 , . . . ) ,  
where c(k) <~ p=(L)/rn 2 <~ C(L) (the functions c(k) and C(L) are positive and independent of m), and 
eigenfunctions Urn(x, ~) = U(x, p~m(X), L), which possess the basis property [5, 10, 12]. 

Note that variational problem (2.1) for determining the subsequent values of tam and the functions 
Urn, m ~> 2, is supplemented by the conditions for the functions Um to be orthogonal, with weight 
r(x, X), to the previous U1, . . . ,  Urn-l, i.e. 

l 
@:qtU] = (U/(x,Z),U), = ~r(x, Z)U/(x,X)Udx = O, j = 1 ..... m - I (2.3) 

0 

We will assume for a while that the solutions of problem (2.2) or (2.3) of those variational isoperimetric 
problems (2.1) and (2.3) are known for each admissible value of L ¢ A. We can then determine the 
desired solution of the initial problem (1.1) as follows. We choose a certain arbitrary value of the subscript 
m and consider the relation 

IXm(Z)=l, ~.~A, re=l ,2  .... (2.4) 

where p,,,(L) is a smooth function of L, as the equation in the unknown L. The set of real roots {Xn}, n 
= n(m), of Eqs (2.4) for all m ~> 1 defines the desired spectrum of problem (1.1). It can be shown by 
simple examples that this set can be empty, finite and denumerable or/and continuous, i.e. discrete- 
continuons. The behaviour of the spectrum as a function of the index and the other parameters of the 
system can be investigated with the required completeness in extremely rare cases, where we know the 
analytical relationship tam(X) (see examples (1.2)-(1.4)) or where the problem is close to the classical 
one [9]. 

By means of standard operations we find the following expression for the derivative of la=(L) with 
respect to X 

t ~p X ,2 Jr 2 
~Lm(~,)----~[~ (X,)Um(X,~)-~m(L)-~'£(x,L)Um(X,L)]dx (2.5) 

For appro~mate or numerical calculations it is natural to assume that ~t'm(X) ~ 0 in the neighbourhood 
of the required value of L. The derivative L ~ A (2.5) exists and is continuous with respect to L if the 
functionsp and r are continuously differentiable with respect to L E A. The sign of ttm can be established 
a priori when the derivatives ~/0L, ~/0X are of corresponding definite sign. 
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For applications, our main interest is to find an effective means of constructing an estimate of the 
upper and lower bounds, and also to carry out a highly accurate calculation of the eigenvalues Ln, 
assuming they exist [5, 13]. The conditions for real eigenvalues of problem (1.1) to exist can be 
established, in a number of cases, by rough estimates of the functionsp(x, ~) and r(x, L) with respect 
tox, 0 ~< x ~< I. It is proposed to carry out the investigation by a variational treatment of problem (2.1), 
(2.3) using the Rayleigh-Ritz method, in particular, the Rayleigh principle [5, 6, 12, 13]. For simplicity 
and to fix our ideas we will construct the upper estimate of the set of values Ixl(~.), L E A (the subscript 
m = 1 is omitted for brevity) 

0 < I.t(~)~<g*(~) = J~[~]/tI)x[~g], ~(0,L) = ~g(l,~) -= 0 (2.6) 

In expression (2.6) ~g is a continuously differentiable function of x, which also depends on u(x, ~0) 
= 0 and is chosen from general physical considerations concerning the first eigenfunction (no 
intermediate zeros, convexity, symmetry, etc.). Suppose this estimate Op/OL ~< 0, 0r/0~. > 0 is constructed; 

0 then a certain estimate L can be defined in the same way as (2.6) by means of Eq. (2.4) 

~,o = Argx[g*(L)- 1], ~,, ~,o E a (2.7) 

We choose a certain root ~0 (2.7) and substitute into Eq. (1.1); consider the Cauchy problem 

(p(x,~,°)v ")'+ r(x,~.°)v = 0, v (0) = 0, u '(0) = 1 (2.8) 

We construct the solution u(x, k0) of problem (2.8) analytically, numerically or in the form of a 
procedure. It follows from (2.6), (1.6) and the second Sturm oscillation comparison theorem [9, 14] 
that the positive first root ~ of the equation u(x, ~0) = 0 when the conditions Op/Ok <~ 0, 0r/~2 > 0 (or 
0p/07~ < 0,/gr/0~. >~ 0) are satisfied, satisfies the inequalities 

<> l, L ° ~ L; ~=~(L°)=argxu(x,L °) (2.9) 

If Op/OL >I O, Or/~L < 0 (or Op/~L > 0, &/tg~. ~< 0), the opposite inequalities to (2.9) hold. Note that 
when ~ > l, the functions p and r can be extended in an arbitrary smooth way into the intervalx e (l, ~], 
while preserving the conditions on the derivatives with respect to k. 

3. THE ACCELERATED CONVERGENCE METHOD FOR THE HIGHLY 
ACCURATE SOLUTION OF AN AUXILIARY PROBLEM 

We will introduce the numerical parameter e = 1 - ~l; the smallness of the quantity I e I reflects the 
relative closeness of ~0 to L (see [13]). It follows from relations (2.6)-(2.9) that ~0, u(x, L °) is the exact 
solution of the generalized problem (1.1) in a known interval 0 ~< x ~< ~, ~ = ~(k0). We will assume that 
it is the approximate solution for the initial interval 0 <~ x ~< I. These assumption are the basis of the 
proposed method for constructing the desired solution. We will use the methods of perturbation theory 
to refine this approximate solution and to construct it with as high degree of accuracy as required in 
powers of the small parameter e in the above-mentioned sense. 

Note that we can arrange for the quantity [e I to be sufficiently small by applying the Rayleigh-Ritz 
method to problem (2.2) (see [5, 9, 12]). For an arbitrary value of the index m, m >~ 1, the investigation 
is carried out in a similar way: the abscissa ~ is the mth zero of the function u, while the value of L ° 
corresponds to the estimate IX*(Z,). 

We will describe the procedure for refining the value of IXQ.) and the function U(x, L) of the family 
of Sturm-Liouville problems (2.2). The approach is based on the Lyapunov-Poincar6 perturbation 
method [13] and a continuation procedure with respect to the parameter ~. ~ A. The recurrent algorithm 
has the extremely simple form 

(k) (k) (k) (k) ,2 (k) (k) 2 lltk+l)(~)=l.t ( ~ ) - e  (Z,)~ (~)p(~ ,~,)V (~ ,g ,~)[[V~r (3.1) 

e (k) = 1-~(k) I1, ~(k)(E) = arg x V(x,l.t(k)(L),~,), ~, ~ A, k = 0,1,2 .... 

We take as the initial approximation e(0), ~(0) quantities similar to those obtained above. They are 
determined by solving the Cauchy problem for the function V(x, Ix, L) with known value Ix(0) = Ix,(L). 
The general scheme for arbitrary k/> 0 has the form 
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(p(x, Z)V')'+ ~tct)(Z)r(x,g)V = 0, V(0) = 0, V'(0) = 1 (3.2) 

The function V(x, Ix(k)(3-), L) is constructed in the interval 0 ~< x ~< ~(k)(3-), where ~(k) is the mth zero 
of the function V. The square of the norm of the function Vwith weight r(x, 3-) in the interval 0 ~< x ~< 
~(k)(3-) in (3.1) is determined in a standard way by a quadrature of the type (2.1), or by integrating the 
equation for the function W = av/att in the form 

~V~2r - I r(x, ~,)V 2 (x, It <t), ~,)dx = p(~(t), ;~,)V,(~(t), i.tCk), 3-)W(~tt), pit), ~,) 
0 

(3.3) 
(p(x, ~)W')'  + tt ok) (~,)r(x, ~,)W = -r(x ,  ~.)V(x, ~t c~), ~,), W(O) = W'(O) = 0 

The right-hand side of (3.3) for Wis known, but it is more convenient, from the computational point 
of view, to integrate the Cauchy problem (3.2), (3.3) jointly and to calculate I I VI 12 

Hence, the algorithm for refining the solution Ix(3-), U(x, 3-) = V(x, Ix, 3-) of the Sturm-LiouviUe problem 
(2.2) reduces to highly accurate integration of Cauchy problems (3.2) and (3.3) for V and IV, the 
determination of the desired root ~(g) (3-) and the calculation of the correction of the order of e (k) = 
O, where 0(k) = 2 k, for the desired Ix(3-) (3.1); the constant cr,(3- ) - 1 in the estimate is calculated 
effectively [13, 15, 16]. After constructing the function Ix(3-) for the admissible 3- ~ A from Eq. (2.4) we 
obtain the eigenvalues ~ and the functions Un(X) of problem (1.1). it is preferable to use this approach 
in the form of a continuous procedure with respect to the parameter 3-, employing the exact value Ix(),) 
as the initial approximation for determining Ix(7. + 83-), where the quantity 83- is sufficiently small, which 
is established by calculation [15, 16]. 

Note that the set A, for which the constructions are carried out, can be refined and, as a rule, narrowed 
considerably as follows. We introduce functionsff(3-) (f = p o r f  = r) of the form 

f+(Z,) = maxxf(x, ~),f-(~,) = minxf(x, ~.),f+ > f - >  0, L ~ A (3.4) 

By (3.4) we obtain rough upper and lower bounds for the desired Ix,n(3-) for problem (2.2) 

(gm)2p-(Z)/r+(~,) < IJ.m(L) < (gm)2p+(3-)/r"(3-), ~, ~ A, ktr~(3-n) = 1 (3.5) 

Hence, the function Ixm(3-) need be constructed only for values 3- e A, compatible with (3.5), which, 
in specific problems, leads to considerable reduction in the amount of calculations required (see examples 
(1.2)-(1.4)). The accelerated convergence algorithm described above can be implemented fairly simply 
on modern computers without the need for expensive software, based on the Rayleigh-Ritz, finite- 
elements, etc. methods. It enables us to obtain virtually exact results after two-three iterations; for ec, 

- 4  16 ,, F, = 0.1-0.01 the relative error of the calculations is a quantity of the order of 10 -10- . The shooting 
method requires from 13 to 50 iterations to achieve a similar error. 

4. A D I R E C T  M E T H O D  FOR THE HIGHLY ACCURATE S O L U T I O N  OF 
THE G E N E R A L I Z E D  PROBLEM 

The approach described in Section 3 is convenient to use at the preliminary stage of the investigation 
of existence problems and for determining the region of admissible values of the desired parameter. 
However, in specific calculations, when refining a certain value of 3- it may lead to an excessive amount 
of calculation, due to the highly accurate construction of the function Ix(k) over a wide range of admissible 
values, specified by inequalities (3.5), and to the numerical solution of Eq. (2.4). An indirect method 
for refining the estimate L ° is more economical. 

The procedure for refining the generating solution 3-0, t~(x, 3-O) (2.6)-(2.9) is based on the introduction 
of a perturbed argument y = ~(x) and the representation of the problem (1.1) in the form of a 
perturbed problem [13, 15, 16]. The use of the perturbation method, employing the standard scheme 
of expansion in powers of the small parameter e, leads to similar inhomogeneous boundary-value 
problems. 

We will consider, in particular, the problem of the fLrSt approximation and take into account a condition 
similar to the Fredholm alternative (orthogonality with weight ~x, 3-0), of the generating solution t)(x, 
3. °) and of inhomogeneity). We finally obtain a refined value 3-(1), which takes into account terms of the 
order of e, i.e. with error O(e 2) 
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~,0) = ~o _ ~ p ( ~ ,  ~o)v,2(~ ' ~o)d-l (~o) ,  ~ = 1 - ~1 ,  ~ = ~(~o)  (4 .1)  

a(~. °) = jo~[-p~.(x, ~.°) v '2(x,~.°) + r;.(x,~,°)v 2(x, ~,°)]dx = p(~,~,°)u '(~, ~,°)w(~, ~,°) 

The function w(x, ~0) in (4.1) is defined as the simultaneous solution with v(x, ~0) of the Cauchy 
problem (similar to problem (3.3) for IV) 

(p(x, 7~°)w') ' + r(x, Z,°)w = --(p-1Op/OZ,)'pv" + (rp-1~p/~Z, - Or/OZ,)u , w(O) = w'(0) = 0 (4.2) 

The functionsp and r and their derivatives with respect to x and 7~ on the right-hand side of Eq. (4.2) 
are taken with L = ~0. 

Using relations (4.1) and (4.2), a recursive algorithm of accelerated convergence with respect to the 
small parameter e of the type (3.1)-(3.3) is constructed. At each step k it consists of successive refinement 
of the value of ~., integration of the Cauchy problem for o, taking into account this refinement (and 
for w in order to determine the "square norm" v in W(°)with weights -p'~.(x, x(k)), r'~(x, X (k)) and the 
highly accurate determination of the abscissa ~(k) 

~Ck+l) = ~(~) + e¢~:)~f~)p(~(k), ~¢k)) V ,2 (~(k), ~¢k)) / d(~ ¢~) ), ~(~) (~(k)) = 

= arg n v (x, 7~ ok)), e (k) = 1 - ~Ck) / l (4.3) 
.g 

k = 0, 1, 2 .. . .  ; ~,(0) = ~o, e(o) = e = 1 - ~(~°)/l, ~(0) = ~(~0), d ~: 0 

w ~ (~) The functions t~ and "n (4.3) are calculated from (4.1) and (4.2) with the value of ~. obtained in 
,, ,, (k) the previous step k. The analogue of the square of the norm d(L ) has the form (4.1). From (4.1) 

and (4.3), by passing to the limit, we obtain the differential relation 

d~,/dl = X(I, ~,), X(I, ~) = -p(l, ~,)u'2(l, L)/d(~,) (4.4) 

As a result of modifying algorithm (3.1)--(3.3) we obtain a direct procedure for refining the value L 
and u of initial problem (4.1), which possesses the property of accelerated convergence, i.e. which leads 
to an error e (k) = O((cze) °(k')) ( ] ~1 "~ 1, c~ - 1), where 0(k) = 2 ~ at the kth step of the iteration, k = 

(k) V 0, 1, 2 . . . . .  The convergence of the functions v(x, ~. ) to u(x, L) and of the deri atives with respect to 
x will be uniform for all 0 ~< x <~ l and accelerated with respect to the iteration number k. It should be 
noted, that without loss of accuracy in powers of e (k) in all the formulae (3.1), (3.3), (4.1) and (4.3) we 
can put ~(k) = 1, apart from the formulae for calculating the parameter e(~) = 1 - ~fk)/l. The  basis of the 
convergence and the estimate of the convergence radius [ e I ~ e0 are obtained as described previously 
[13, 161. 

This method can be applied to problems of more general form, described by systems of equations, 
boundary conditions of the third kind, periodicity conditions, mixed boundary conditions, etc. As 
computational practice shows, the method is highly effective: the algorithm is simple to implement, it 
has accelerated convergence, it is economical with respect to RAM capacity and the number of 
operations, it is stable to faults, and there is no accumulation of round-off errors. These properties of 
the method also enable problems with regular singularities to be investigated successfully, which is 
extremely problematical for other approaches. The method is particularly effective when carrying out 
a large amount of highly accurate calculations related to the parametric synthesis of systems described 
by general boundary-value eigenvalue and eigenfunction problems (see Section 6). 

5. M O D E L  E X A M P L E S  

In order to test the algorithm we will carry out some calculations of illustrative examples using the accelerated- 
convergence method. 

$.L Suppose I = p = 1, r(x, L) = (~. + x2)-2; the function r is then defined for all 0 ~ x ~ 1 with )~ ~ A -- (~.: ~. 
> 0, L < -1}. To fix our ideas, we will consider values of ~. > 0; from (3.4) and (3.5) we obtain rough estimates of 
Ln 0 < ~ < (~.n) -1 Using analytic techniques we can construct the exact solution in the form 

u(x, )~) = c ( g  + x 2 )~ sin (p(x, ~.), (p(x, g )  = (1 + g- l  ) ~  arc tgx~-~  (5.1) 

~.n ffi Arg[~p(l, ~.) -wn], n = 1, 2, ..4 ~.n ffi (2n) -2 + O(n"4), n ~* 1 

~,! = 0.165643, )~2 = 0.048674, ~3 = 0.023214 .... 
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We use the eigenvalues X~ and the eigenfunctions u(x, L,,) obtained as exact solutions. The accelerated-convergence 
algorithm (4.1)-(4.3) can be implemented numerically by using elementary computational methods, which ensure 
a calculation accuracy with a relative error of the order of 10-6 and a relatively low speed; the requirements imposed 
on the RAM are minimal. 

Using the Rayleigh principle, from (2.6) and (2.7) we calculate a rough lower bound X0 = ~,1. = 0.16 of the first 
value of Xl for the trial function ¥(x, Z,) = sinrtx. The solution of Cauchy problem (2.8) leads, by (2.9) and (4.1), to 
the values ~ = 0.935549 and ~ = 0.064451 and to the refined value X'~. = 0.165425, which is quite close to ~,1 (5.1). 
The next iteration of (4.3) gives the approximate value ~2)* = 0.165656--an upper bound, which is also extremely 
close to Xl. On the basis of  the upper and lower bounds for Xl we can calculate the mean value, the relative error 
of which AXl/Z.~ ~< 10 -4. The slight disagreement between the error obtained and the theoretical error can be explained 
by the round-off errors of the calculator or of the value of c~. Note that the extremely rapid convergence of the 
algorithm after several iterations virtually exhausts the accuracy possibilities of modem computers. 

Thus, if the calculations are carried out with a relative error of 10-2°-10 -3°, then for ecx = 0.01 - 0.01 the number 
of iterations should not exceed k = 4--6. In practice the calculations are usually carded out with a relative error 
of 10-3-10 -5. Hence, it is sufficient to carry out 2-3 iterations ~compared with 15-20 in the "shooting" method). 

For comparison we will take a rough upper bound for ~.1: X~ = X~' = 0.17. Using the above method we obtain 
= 1.052775 and e = -0.052775, while the exact value X(~). = 0.165545 is a lower bound. The next iteration gives 

~(2). = 0.165637, which is also a lower bound but a refined one. Using the exact value of X (5.1) we find that the 
relative error AXl/X,I <~ 4 x 10 -5. 

5.2. We will carry out a rather brief calculation of a model example, the analytical solution of which is known. 
Suppose I = p = 1, r(x, X) = (X + 0, lsinr, x)-2; the function r is defined for all 0 ~< x ~< 1 for X e A = {~,: ~. > 0, 
~. < --0.1}. Consider the values X > 0; by (3.4) and (3.5) we have the estimates 0 < Xn < ~nn) -1. Using the Rayleigh 
principle, by analogy wit (5.1), we obtain a rough lower bound of one of the e igenvalues k 1 --- Xl. = 0.2. Calculations 
using (2.8), (2.9) and (4.1) give the values ~ = 0.894047 and e = 0.105953; the refined lower bound k02 = 0.229819. 
On the basis of this we obtain ~0) = 0.984095 and ~(t) = 0.015905. The next iteration again leads to a refined lower 
bound 7~(~). = 0.235203. The third iteration gives, finally, the upper bound ~(3)~ = 0.235283, which gives a relative 
error of A~I/X 1 ~< 4 x 10 -6. Similar calculations for the other eigenvalue enable us to obtain fairly simply X2 = 0.097163 
with a relative error of AL2/X2 ~< 4 x 10 -5. 

Hence, a calculation of non-trivial test examples confirms the effectiveness of the numerical-analytic method 
described for solving generalized eigenvalue and eigenfunction problems. This method has no analogue in the 
scientific literature. Using it we can carry out highly accurate calculation of the more interesting problem of the 
lateral buckling of a cantilever beam acted upon a load concentrated at the end and a distributed load. 

6. T H E  E F F E C T I V E  S O L U T I O N  O F  . T H E  P R A N D T L  P R O B L E M  

Cons ider  the classical p r o b l e m  of  the lateral  buckling of a long canti lever b e a m  with a na r row 
rec tangular  cross-sect ion [5, 6]. We will assume that,  in addit ion to a bending  force P concen t ra ted  at 
the end,  a dis t r ibuted mass  force, for  example,  gravity [5], has a considerable  effect  on the stability. 
T h e  boundary-va lue  p r o b l e m  for  a torsion angle 13 can be  reduced  to the fo rm 

(~(x)l~') '  + [Px + g l  (x  - s)p(s)ds]2~ = O, ~'(0) = f~(l) = 0 (6.1) 
0 

H e r e  ~(x) is the tors ional  stiffness, or(x) is the stiffness of  bending,  o r thogona l  to the vertical  plane,  
p(x) is the l inear density and g is the accelerat ion due to gravity. The  b e a m  is assumed to be  fairly nar row 

2 and  long, i.e. d ~hi ,~ 1, where  d and h are  the characterist ic  l inear  d imensions  (the thickness) o f  the 
b e a m  in the horizontal  and vertical planes respectively [6]. The  unknowns in p rob lem (6.1) are the critical 
value P -- P . ,  at  which lateral  buckl ing with twisting occurs in the beam,  i.e. we have the non-tr ivial  
solut ion I~(x, P . ) ,  and  also the buckling shape  indicated above.  The  quant i ty  P .  represen ts  the load- 
carrying capaci ty  o f  the beam.  Classical results re late  mainly to the case of  a b e a m  of  cons tant  cross- 
sect ion (c ,  ct, p are  constants)  and moreover ,  the effect of  the weight (distr ibuted) c o m p o n e n t  is usually 
neglec ted  in (6.1) [5, 6]. T h e  last assumpt ion  for  fairly long b e a m s  may  lead to considerable  e r r o r s - -  
values  o f  P .  that  are  too high. 

We will consider  p r o b l e m  (6.1) taking into account  the effect  o f  the weight,  assuming that  the b e a m  
cross-sect ion is constant .  We will in t roduce appropr ia te  dimensionless  p a r a m e t e r s  X and 0 and 
normal ized  a r g u m e n t  x; we obtain  the following general ized e igenvalue and e igenfunct ion p r o b l e m  of  
type (1.1) 

~" + (~LX + 0X2)2~ = O, 0 ~- X ~< 1, [5'(0) = [5(1) = 0 (6.2) 

~, = P/2(t~ot)-)6, 0 = )6pg/3(t~tx) - ~  
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Fig. 1. 

Note that the compliance r(x, ~,, O) -- 0 (r is the coefficient of 13) forx = 0 and, moreover, at the left 
end we have a condition of the second kind (a free end). In this case the scheme for constructing the 
desired solution (see Sections 2--4) remains the same, but the initial conditions in the Cauchy problems 
change: in (2.8) o(0) = 1 and u'(0) = 0 while in (3.2) V(0) = 1 and V'(0) = 0. We will formulate the 
problem of determining the first eigenvalue ~, = X(0) for a fairly large set of values of 0 I> 0. 

The case 0 = 0 leads to a well-known result [6]: ~,(0) = 4.013; a more accurate value, obtained by 
the accelerated-convergence method, is ~,(0) = 4.012597. The results of highly accurate calculations 
for 0 > 0 are shown in the graph (see the figure); the calculations were carried out with a relative error 
of 10 -6 - 10 -7. It follows from the graph of ~,(0) that as 0 increases the value of L decreases monotonically 
(virtually linearly) and reaches a zero value X(0,) = 0 when 0 = 0, = 6.4269. As 0 increases further (0 
> 0,) the value of ~,(0) becomes negative, i.e. the beam has a negative load-carrying capacity due to 
the effect of its own weight. To provide stability a "supporting" force P < P. ~< 0 required. However, 
the quantity IPI must not be too large to avoid lateral buckling due to the large point load P < 0. 

Note that when 0 = 0 the problem also has a negative eigenvalue ×(0) = -~,(0), which has a mechanical 
interpretation (P, < 0). The corresponding values of ×(0), 0 > 0 are also of interest (they are shown 
on the graph in Fig. 1). In addition to positive values of 0 we can also consider negative values (the 
acceleration of the mass forces is directed upwards). Note that central symmetry X(0) = -~(-0)  follows 
from the form of problem (6.2). The formulation of the problem of the load-carrying capacity of the 
beam can be modified as follows. It is required to determine, for all 101 < oo, the total force AP(0) 
which characterizes the elastic stability of the beam both when loaded downwards (P+ > 0) and upwards 
(P- < 0), i.e. it is required to obtain AP(0) = P+ - P- = [L(0) - ×(0)Ix/era/2. Using the curves of L(0), 
×(0) by rotation by an angle 7t in the plane we obtain the required dependence --0. ~< 0 ~< 0.. As a 
consequence of the symmetry indicated, it is sufficient to construct AP, i.e. the relations ~,(0), x(0). 

Note that using the accelerated-convergence method described in Sections 2-4, one can investigate 
problem (6.1) for arbitrary specific functions a(x), ix(x) and p(x), including the problem of optimizing 
the mass distribution of the beam taking natural constraints into account [17]. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-00222 
and 99-01-00276). 

R E F E R E N C E S  

1. SRETENSKII, L. N., The Dynam/c Theory of Tides. Nauka, Moscow, 1987. 
2. ECKART, C., Hydrodynamics of Oceans and Atmospheres. Pergamon Press, New York, 1960. 
3. CHAPMAN, S. and LINDZEN, R.,Atmospheric Tides. D. Reidel, Dordrecht, 1970. 
4. GOLITSYN, G. S. and DIKII, L. A., Natural oscillations of planetary atmospheres depending on the speed of the planet 

rotation, lzv. AkacL Nauk SSSR. Fiz. Atmosfery Okeana, 1966, 2, 3, 25-235. 
5. COLLATZ, L., Eigenvertanfgaben mit technischen Anvendungen. Akademische Verlagsgeselschaft. Geest & Portig, Leipzig, 

1963. 
6. TIMOSHENKO, S. P., Theory of Elastic Stability. Gostekhizdat, Moscow, 1946. 
7. AKULENKO, L D., Problems andMethods of Optimal Control. Dordrecht, Kluwer, 1994. 



The natural oscillations of distributed inhomogeneous systems 625 

8. MARKEYEV, A. P., The stability of the plane oscillations and rotations of a satellite in a circular orbit. Kosmich. lssled., 
1975, 13, 3, 322-336. 

9. KAMKE, E., Differentiaigleichungen: L6sungmethoden und L6sungen, B. I. B. G. Teubner, Leipzig, 1977. 
10. SADOVNICHH, V. A., The non-self-adjoint operator. Mathematical Encyclopedia, Izd. Soy. Entsiklopediya, 1982, 3,1006--1010. 
11. GOKI-IBERG, I. Ts. and KREIN, M. G., Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Space. 

Nauka, Moscow, 1965. 
12. KRYLOV, N. M., Selected Papers. Vol. 2. lzv. Akad. Nauk UkSSSR, Kiev, 1961. 
13. AKULENKO, L. D. and NESTEROV, S. V., An effective method of investigating the vibrations of strongly inhomogeneous 

distributed systems./bik/. Mat. Mekh., 1997, 61, 3, 466-478. 
14. STEPANOV, V. V., Course of Differential Equations. Gostekhizdat, Moscow, 1953. 
15. NESTEROV, S. V. and AKULENKO, L. D., An effective solution of the Sturm-Liouville problem. Dok/. Ross. Akad. Nauk., 

1996, 347, 1, ~ ~ .  
16. AKULENKO, L. D. and NESTEROV, S. V., Determination of the frequencies and forms of vibrations of inhomogeneous 

distributed systems with boundary conditions of the third kind./V/k/. Mat. Mekh., 1997, 61, 4, 547-555. 
17. TROITSKII, V. A. and PETUKHOV, L. V., Optimization of the Shape of Elastic Bodies. Nauka, Moscow, 1982. 

Translated by R.C.G. 


